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ABSTRACT
As a unified data repository, data lake plays a vital role in enter-
prise data management and analysis. It composes the raw files
into tables that are processed in-situ by various computation en-
gines and applications. Therefore, the read performance of the
tables is of great importance for analytical workloads in data
lakes. In this paper, we improve the read performance from two
dimensions: (1) storage-layout optimization that improves the
I/O efficiency; (2) data caching that reduces the amount of I/Os.
We observe that storage-layout optimization in existing work is
limited by the physical row group boundary determined by data
ingestion, while the existing caches in the software stack of data
lakes are not dedicated to analytical queries on column stores.
Therefore, we apply the inter-row-group layout optimization to
overcome the former limitation and propose a columnar caching
mechanismwith a lazy replacing policy for analytical workloads.
We also show initial evaluation results to support our design.

1 INTRODUCTION
A data lake is a unified data repository for analytical applica-
tions in a company or an organization. It provides table storage
andmanagement services on a vast amount of raw files stored in
distributed file systems (e.g., HDFS) or cloud storage (e.g., AWS
S3 [1]). The tables backed by raw files are processed in-situ by
various query engines, avoiding the long-running and expen-
sive ETL. Within a data lake, columnar file formats, such as Par-
quet [9] and ORC [7], are usually applied to improve the I/O
efficiency of analytical queries.

In data lakes, structured data is ingested and encoded into
row groups following the PAX table layout [19] , where colum-
nar format is applied in the row group. As shown in Figure 1,
the data within each row group is organized in columns that
are stored sequentially. We refer to each column of a row group
as a 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐ℎ𝑢𝑛𝑘 , which is independently compressed with a
domain-specific compression algorithm (e.g., dictionary encod-
ing, run-length encoding) to reduce space overheads and I/O
costs. Given a query, as projection is pushed down to the table
scan operator, it only reads needed column chunks.

Although it is confirmed that the PAX table layout is efficient
for data lakes, and packing columns into separate files (i.e., pure
columnar table layout) is unnecessary [15, 19], storage layout
in data lakes is still far from optimal. Many existing studies im-
prove the read performance of the PAX table layout from two
major dimensions: storage-layout optimization that improves the
I/O efficiency; data caching that reduces the amount of I/Os.

Storage-layout Optimization. To reduce the disk seek cost
of reading the needed columns, column ordering [14] reorders
the physical positions of column chunks within the same row
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Figure 1: An illustration of the table layout in columnar
file format, where 𝑐𝑖 is a column chunk in the row group
and 𝑞𝑖 is a query.

group and puts frequently co-accessed column chunks into nearby
positions. Such a way of physical storage-layout optimization is
especially effective for wide tables with many columns, as ran-
dom disk seeks take a large proportion of the I/O cost when
reading a few from the many column chunks in a row group of
fixed size (typically tens or a few hundreds of megabytes [6, 8]).
Wide tables are prevalent in today’s data lakes [4, 12, 14], and are
used to convert the complex and expensive distributed joins into
simple table scans. In addition to column ordering, increasing
row group size can further improve the I/O performance [13, 14].
However, increasing row group size will sacrifice the efficiency
and timeliness of data ingestion [13, 14].

Data Caching. In addition to storage-layout optimization,
caching is applied in various layers of a data lake, such as page
cache in the Linux kernel, file cache in the storage system (e.g.,
HDFS Centralized Cache [2]), distributed file caching system
(e.g., Alluxio [17]), and intermediate result cache in the query en-
gine (e.g., Spark RDD Cache [11]). However, each existing cache
has its limitation. The page cache employs LRU-based policies,
and the query engine cannot directly control which part of the
data is cached. The hot data that is more worthy of being cached
might be evicted by a query that reads a large amount of cold
data. The file cache in storage systems and the distributed file
caching systems cache entire files or blocks. For PAX layout that
stores all the column chunks of a row group in the same file or
block, they lead to very low space efficiency. For the intermedi-
ate result caching in a specific query engine, it cannot be shared
by queries and applications running outside of the engine. More-
over, the cache is lost when the query session is closed or the
query engine is shut down.

In this paper, we present a column storage engine with (1)
storage-layout optimization across row group boundarywithout
affecting data ingestion; (2) a lazy columnar cache. For storage-
layout optimization, we apply asynchronous and inter-row-group
column compaction on the recently ingested row groups to im-
prove query performancewithout affecting the efficiency of data
ingestion. For data caching, we choose column chunk as the
best cache granularity for analytical queries and enable efficient



Figure 2: The architecture of Pixels.

cache accesses. We also envisage that lazy cache replacing (i.e.,
replace the cache according to long-termworkload patterns) pro-
vides a higher hit rate than the eager replacing policies (i.e., re-
place the cache whenever a data item is accessed).

We have implemented the storage-layout optimization and
the columnar caching framework in our column storage engine,
Pixels1. In the rest of this paper, we introduce the architecture
of Pixels in Section 2, present storage-layout optimization and
columnar caching in Section 3 and 4, respectively, and show eval-
uation results in Section 5.

2 PIXELS ARCHITECTURE
The architecture of Pixels is shown in Figure 2. It consists of six
main components (the light green blocks).

Metadata Server stores and maintains the system metadata,
including table schema and data location, in Etcd [5], which is a
distributed and high-available key-value store.

Storage Optimizer is a background process that monitors per-
formance metrics and the evolution of query workload. It adap-
tively generates new storage layouts and cache plan (i.e., col-
umn chunks to be cached on each node). The new data layout
and cache plan are maintained by Metadata Server and will be
applied to the upcoming ingested data.

Node Manager reports each node’s hardware metrics, such as
CPU, memory, disk, and network usages to Prometheus [10] for
performance profiling and storage optimization. It is also respon-
sible for replacing the Column Chunk Cache according to the up-
date of the cache plan.

Pixels Reader and Writer are the I/O interfaces in the client
libraries used to read and write files in Pixels format. The reader
probes the Column Chunk Cache transparently.

Connector is the library used by query engines to connect to
Pixels. It requests metadata fromMetadata Server for query pars-
ing and is responsible for generating query splits for table scan
and calling Pixels Reader to read data. The connectors for vari-
ous query engines are similar, thus developing a new connector
requires few efforts.

Scalability and Fault-tolerance. In the architecture, Meta-
data Server and Node Manager run independently as stateless
daemons, without explicit inter-node state synchronization. All
states are maintained in Etcd [5] as it is fault-tolerant and reli-
able. If any daemon crashes, it can be immediately restarted by
the guard process, without an expensive recovery progress. This
makes Pixels scalable and easy to deploy and maintain.

1https://github.com/pixelsdb/pixels

Figure 3: Inter-row-group column compaction example.

3 STORAGE-LAYOUT OPTIMIZATION
In this paper, we take HDFS as the underlying storage. From the
vertical dimension, by putting the co-accessed column chunks
within a row group to adjacent or closer positions (i.e., intra-
row-group column ordering), the disk seek distance to read the
column chunks is eliminated or reduced. As seek cost (which can
dominate the I/O cost of a query) and seek distance are positively
correlated [14], the I/O efficiency can be improved by intra-row-
group column ordering.

From the horizontal dimension, increasing row group size, i.e.,
reducing the number of row groups in a table of a given size, also
improves I/O efficiency, because it reduces the number of seek-
and-read operations required to scan the table. However, row
group size is limited by data ingestion [13], during which, data
is consumed, encoded, and packed into in-memory row groups
and then written as blocks into the storage. As data ingestion is
CPU intensive, it is executed using many threads (cores) to in-
gest the fast arriving data in time. Each thread produces a row
group at a time using limited memory space. Typically, the size
of a row group in the storage (after encoding and serialization)
is only tens of megabytes [6, 8]. For the prevalent wide tables
(e.g., with 1000 columns) in data lakes, the average size of the col-
umn chunks is relatively small (e.g., tens of kilobytes). Therefore,
even with column ordering, the I/O pattern of wide-table scan is
still dominated by random access, resulting in sub-optimal query
performance. [13] improves I/O performance by increasing the
row group size but sacrifices the data ingestion efficiency.

3.1 Inter-row-group Column Compaction
To further improve I/O performance without affecting the ef-
ficiency of data ingestion, we propose inter-row-group column
compaction. As illustrated by the example in Figure 3, four phys-
ical row groups produced in data-ingestion stage (where intra-
row-group column ordering is applied to tune the column order)
are asynchronously compacted into a large HDFS block. Within
the block, column chunks of the same column are put together
while the order between columns remains the same as in the
physical row groups.Metadata footers of the physical row groups
are packed into the footer of the large block. Column-chunk
pointers in the row group footers are modified to point them
to the new positions after compaction. Row groups still exist
logically. During query planning, logical row groups within the
same block are packed into the same query split that is scanned
by a single table scan task. In this way, as the query can scan the
column chunks of the same column sequentially without multi-
ple disk-seeks in HDFS, the I/O performance is significantly im-
proved. The efficiency of data ingestion is not affected either, as
column compaction is performed asynchronously. The recently
ingested (physical) row groups that have not been compacted



are also involved in query execution to reflect the freshest data.
In practice, we compact 2𝑖 (e.g., 32) row groups into one block.
It leads the block to be 1-2GB, which is appropriate for HDFS.

Although adaptively packing data units into pages or blocks
according to workload type (e.g., OLTP and OLAP) has been
studied in related works [18, 20], to the best of our knowledge,
compacting column chunks acrossing row group boundaries has
not been proposed to improve the I/O efficiency in column stores.

If the underlying storage is a cloud object store (e.g., AWS
S3 [1]), the disk seek latency is then replaced by remote access la-
tency. Although their cost models are different, we observe that
putting co-accessed column chunks closer and fetching them by
a single request can also help improve the performance. Storage-
layout optimization for cloud storage is our in-progress work.

4 COLUMNAR CACHING
In this section, we describe the columnar caching mechanism
in Pixels, which takes column chunk as an atomic unit of data
access and eviction, and applies a lazy replacing policy instead
of the LRU or LFU variants that eagerly replace the cache con-
tent upon cache misses. As discussed in Section 2, the Storage
Optimizer generates the global cache plan that is stored in etcd
and specifies the files (sub-plan) to be cached on each node. The
Node Manager on each node is responsible for monitoring and
applying the changes in the sub-plan of the node. The set of col-
umn chunks to be cached is the same for all the row groups, thus
the cache plan is light-weight and realistic for large setups.

4.1 Read-Optimized Cache Access Protocol
We propose a read-optimized access protocol for the analytical
queries to access the cache on each node efficiently. As illus-
trated in Figure 4, on each node, the column chunks are cached
and indexed by an adaptive radix tree [16]. Cache misses are
recorded in a local message queue (MQ). These structures are in
the shared memory and can be directly accessed by the query.

To control the concurrent reads and writes on the cache, we
use rw_flag to indicate if the cache is being written or not, and
reader_cnt to record the read concurrency. They are the only syn-
chronization points between the read and the write (i.e., replace-
ment) operations, and are packed into a 32-bit integer that can
be operated atomically by a single memory instruction (i.e., lock-
free). Each replacement first sets rw_flag andwaits util reader_cnt
becomes zero. For each cache read, the reader first (R1) increases
reader_cnt if rw_flag is false and then looks up the column chunk
in the index. Otherwise, it waits for the concurrent replacement.
If the column chunk is hit in the index, the reader (R2) reads the
column chunk from the cache area and increases hit_cnt. Other-
wise, it (R3) sends a cache miss message to the MQ. When the
read is finished, reader_cnt is decremented.

As the Node Manager is protected by its guard (Section 2), the
replacement always completes and resets rw_flag. Meanwhile, a
timeout mechanism is applied to abort the abandoned reads and
resets reader_cnt, avoiding endlessly blocking the replacement.

Cache replacement happenswhen there is a new cache plan in
etcd (Figure 2). It has to read the new column chunks from under-
lying file systems, which is time-costing. To reduce the blocking
of reads, we divide the replacement into three steps: (W1) Pack
the survived column chunks into the front of the cache area and
update the index. It is very fast as no I/Os are involved; (W2)
Read the new column chunks into the remaining cache area in
the background without blocking cache reads; (W3) Update the

Figure 4: Illustration of the data structure and access pro-
tocol of the column chunk cache on each node.

index to make the new column chunks visible to queries. As the
cache is read in a lock-free fashion and the read-blocking phase
in the replacement is drastically reduced, this access protocol is
efficient for reads.

4.2 Lazy Cache Replacement
In Pixels, we envisage the high efficiency of lazy cache replace-
ment. The cachemisses in each node are collected by Prometheus
(Section 2), without immediately triggering cache replacement.
Whenever the workload pattern evolves, the Storage Optimizer
calculates the cache efficiency of each column chunk by dividing
its hit+miss count by its size. The hit count is stored before each
column chunk in the cache area (Figure 4), while the miss count
is collected from the cache miss messages in the cache miss MQ.
The most-efficient column chunks that do not exceed the cache
capacity are included in the new cache plan that is then applied
across the cluster. This is based on the temporal locality of the
column access.

Other specific algorithms, such as machine learning, can be
used to predict the workload changes, although it is beyond the
scope of this paper. When given a relatively limited memory
space compared to the large on-disk column store, lazy cache
replacement avoids repeated and inefficient cache swapping in
and out. It is intuitive that caching the most frequently accessed
column chunks according to the long-term workload provides a
higher overall cache-hit rate.

5 EVALUATION
In the evaluation, we use Presto-0.192 as the query engine and
HDFS-2.7.3 as the storage. The Java version is 1.8.0_172. The op-
erating system is CentOS-7.8. The hardware platform is a 4-node
cluster. Each node has 2×Xeon E5-2650-v3 CPU (20 cores / 40
threads in total, 2.30GHz), 256GB DRAM, 8×4TBHDD, 2×1Gbps
NIC. HDFS Datanode, Presto Worker, and Pixels Node Manager
are deployed on each node. Each HDFS Datanode uses all the 8
HDDs on the node. Each Presto Worker is allocated 172GB of
memory and 32 threads.

Workload:We use a real-world workload from [14] for eval-
uations. The table contains 1187 columns. There are 547 unique
queries in the workload, with 77.5% of the queries accessing 7
- 20 columns, and a small fraction of them accessing more than
100 columns. We generate 3.75TB of data (in CSV format) for
the table, and the encoded data in Pixels format is 1.18TB. All
the queries are in the following form:
SELECT ... FROM t [WHERE ...]

[GROUP BY ...] [ORDER BY ...]



Configurations:Weevaluate the latency of all the 547 queries
using Pixels under five different configurations: (1) the simulated
Parquet storage layout without any caching (Parquet-S), where
the column order is the same as the one in the table’s schema.
This is the storage layout used by Parquet [9] and ORC [7]. We
have evaluated the performance of Parquet and Pixels on the
aforementioned workload. Result shows that using this layout,
Pixels is slightly faster than Parquet formost queries.We use this
simulation in our experiments to exclude the performance vari-
ance caused by implementations; (2) intra-row-group column or-
dering without any caching (IntraRG); (3) inter-row-group col-
umn compaction without any caching (InterRG); (4) inter-row-
group column compaction with Linux page cache (PageCache);
(5) inter-row-group column compaction with our column chunk
cache (ColCache). The column chunk cache or the page cache
in each node is limited to 64GB. And the cache plan for column
chunk cache is calculated based on the entire workload.

5.1 Inter-row-group Column Compaction
We use the query performance on Parquet-S as the baseline and
compare Pixels with InterRG against IntraRG. The boxplots of
Parquet-S, IntraRG, and InterRG are shown in Figure 5, while
the latency percentiles of the queries are listed in Table 1.

From Figure 5, we can see that IntraRG significantly outper-
forms Parquet-S, while InterRG further reduces query latency
by large margins over IntraRG. For the 25th percentile, median,
and 75th percentile query latency, InterRG outperforms IntraRG
by 5.0x (6.9s vs. 34.5s), 3.1x (13.9s vs. 43.4s) and 3.0x (18.0s vs.
53.5s), respectively. It shows that our layout optimization across
row group boundaries can consistently provide better read per-
formance on the basis of inter-row-group column ordering. The
reason is that a query task can scan the column chunks from
different row groups with sequential disk read. However, for
queries that scan large amounts of data, the benefits of InterRG
are limited because disk seek no longer dominates the I/O cost.
For example, q17 scans around 750GB data from 15 columns, and
sequential scans dominate its cost. Thus InterRG improves very
little compared to IntraRG (300.3s vs. 308.7s).

5.2 Columnar Caching
We compare column chunk cache with Linux page cache based
on the InterRG layout. The boxplots of PageCache and ColCache
are shown in Figure 5. As expected, both caching solutions yield
much better performance than InterRG. However, ColCache fur-
ther outperforms PageCache on most queries, especially for the
queries at the end of the percentiles. We observe that ColCache
outperforms PageCache by 1.4x (5.1s vs. 6.9s), 1.65x (6.5s vs. 10.7s),
2x (7.7s vs. 15.5s), and 1.8x (16.8s vs. 30.3s), respectively, in terms
of the 75th, 85th, 90th, and 95th percentile query latency. It also
reduces the maximum query latency from 325.6s to 289.6s.

For individual queries, ColCache is faster than PageCache on
74% of queries, by 1.61x on average and 7.24x maximum. Page-
Cache is only obviously faster than ColCache on 16% of queries
by 1.06x - 2.65x (1.22x on everage). The evaluation result con-
firms that the lazy cache replacement provides better overall
query performance for analytical workloads than the LRU vari-
ant (which is eager) used in page cache. However, the ColCache
configuration is an extremely lazy case, i.e., a single cache plan is
used for the entire workload. Intuitively, adaptive replacement
driven by the workload evolution should provide better query
performance.

Figure 5: Query latency (in seconds) on Pixels under dif-
ferent configurations.

Table 1: Detailed percentiles of query latency (in seconds)
on Pixels under different configurations.

Min 5th 25th 50th 75th 95th Max
Parquet-S 109.7 149.4 169.6 182.5 199.2 231.3 447.6
IntraRG 24.8 26.5 34.5 43.4 53.5 97.2 333.9
InterRG 3.4 5.1 6.9 13.9 18.0 57.9 317.2
PageCache 1.2 3.2 4.4 5.0 6.9 30.3 325.6
ColCache 1.6 3.1 3.4 4.5 5.1 16.8 289.6

6 CONCLUSION
In this paper, we propose the storage-layout optimization and
columnar caching solution that improve the I/O efficiency for
columnar storage in data lakes. Motivated by the observation
that existing layout optimizations are limited by the physical
row group boundary determined by data ingestion, we presented
a novel inter-row-group column compaction to overcome the
limitation and further improves I/O efficiency. Besides, we ob-
served that existing caches in the software stack of data lakes are
not dedicated to analytical queries on column stores, thus, we
also proposed a columnar cachingmechanismwith a lazy replac-
ing policy.We presented initial experimental results demonstrat-
ing that our inter-row-group column compaction consistently
yields better performance than existing layout optimizations, and
our columnar caching improves the performance of almost all
queries on top of inter-row-group column compaction, and out-
performs Linux page cache onmost queries. All of our works are
implemented inside a column storage engine named Pixels.

In the future, we plan to continue working as following: (1)
Pixels has a plug-able interface for underlying storage systems.
In addition to HDFS, we are working on storage optimization for
other distributed file systems (e.g., Ceph [3]) and cloud stores
(e.g., AWS S3 [1]). (2) The efficiency of columnar caching with
extremely lazy replacement policy has been confirmed. In the
next step, we are going to explore the solutions for the lazy re-
placement that adapts to the trend of workload evolution.
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